Search results for "grain boundary wetting"

showing 2 items of 2 documents

Grain Boundary Wetting Phenomena in High Entropy Alloys Containing Nitrides, Carbides, Borides, Silicides, and Hydrogen: A Review

2021

This review was written during the preparation of M-era.Net full proposal “Grain boundaries in multicomponent alloys without principal component” (A.Ko., A.Ku., G.L., and E.R., application No 9345). We also acknowledge the support of the KIT-Publication Fund of the Karlsruhe Institute of Technology. The Institute of Solid State Physics, University of Latvia, as a center of excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART2.

TechnologyCrystallographyQD901-999grain boundary wetting:NATURAL SCIENCES::Physics [Research Subject Categories]precipitationddc:600high entropy alloysphase diagramsphase transitions
researchProduct

The Grain Boundary Wetting Phenomena in the Ti-Containing High-Entropy Alloys: A Review

2021

In this review, the phenomenon of grain boundary (GB) wetting by melt is analyzed for multicomponent alloys without principal components (also called high-entropy alloys or HEAs) containing titanium. GB wetting can be complete or partial. In the former case, the liquid phase forms the continuous layers between solid grains and completely separates them. In the latter case of partial GB wetting, the melt forms the chain of droplets in GBs, with certain non-zero contact angles. The GB wetting phenomenon can be observed in HEAs produced by all solidification-based technologies. GB leads to the appearance of novel GB tie lines Twmin and Twmax in the multicomponent HEA phase diagrams. The so-cal…

010302 applied physicsPhase transitionMaterials scienceMining engineering. MetallurgyHigh entropy alloysMetals and AlloysTN1-997Titanium alloyThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesphase transitionsContact anglePhase (matter)titanium alloys0103 physical sciencesgrain boundary wettingGeneral Materials ScienceGrain boundaryWetting0210 nano-technologyphase diagramsPhase diagramhigh-entropy alloys
researchProduct